IUMAB Archive 1998
IUMAB Congress Abstracts 1998
Science Information Spirit
1998-EN-RU-AbstractsBondarev Human Monopulse Plasmography
IUMAB Congress Abstracts 1998. Bioelectrography Research. Welcome to IUMAB! Science Information Spirit on IUMAB Library! GDVCAMERA
ИССЛЕДОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЙ ПРИ ГАЗОРАЗРЯДНОЙ ВИЗУАЛИЗАЦИИ ТЕЛЕВИЗИОННЫМ КОМПЬЮТЕРНЫМ
МЕТОДОМ
К.Г. Коротков, А.Л. Кузнецов, Б.А.Крылов
В последнее время все большее распространение приобретает методика исследования характеристик свечения различных объектов в электромагнитных полях высокой напряженности — метод газоразрядной визуализации (ГРВ). Устройство для ГРВ схематически выглядит следующим образом. Скользящий разряд от исследуемого объекта (например, палец руки) развивается по поверхности стеклянной пластины с токопроводящим покрытием, на которую подаются импульсы напряжения от специализированного генератора “Корона”. Изображение проецируется на ПЗС телевизионную матрицу, фокальная плоскость которой совмещена с плоскостью изображения. Стандартный ТВ сигнал выводится на монитор или через видеобластер вводится в компьютер.
Созданный комплекс позволяет не только получать одиночные (покадровые) изображения ГРВ свечения, но и исследовать динамику формирования изображений в реальном масштабе времени путем записи последовательности кадров. При наблюдении четко видно, что для объекта, не имеющего выраженных поверхностных или объемных неоднородностей (специально обработанный заземленный металлический цилиндр) разрядные стримеры возникают равномерно и стохастично вдоль всей поверхности. Для неоднородного объекта (палец руки) стримеры имеют выраженные точки локализации, которые, однако, формируются не сразу, а примерно через 0,2 с после начала разряда.
Таким образом, мы имеем возможность исследовать динамическое влияние очень важных факторов формирования ГРВ изображений — количества подаваемых импульсов напряжения (или, что эквивалентно, частоты напряжения) и длительности экспозиции. Уменьшение величин этих параметров приводит к стохастичности изображения за счет флуктуаций разрядного процесса, их увеличение выше некоторого предела ведет к изменению характеристик объекта под влиянием разряда. Поэтому принципиально важно выбрать оптимальную область параметров, обеспечивающих информативность и не приводящую к возмущению объекта.
Для выявления степени вариабельности последовательных изображений одного и того же объекта применялось их компьютерное суммирование с усреднением. При этом значение яркости каждого пикселя суммарного изображения представляет собой усредненную величину яркостей соответствующих пикселей исходных картин
. RS (x, y) ( Rn (x, y)) / n . Таким образом стример, повторяющийся в одном месте nn
раз с определенной яркостью, даст на суммарной картине изображение такой же яркости, в то время как если он появляется стохастично, на суммарной картине его яркость будет ослаблена в n раз. Очевидно, что аналогичный процесс происходит на фотоэмульсии при экспонировании ее последовательностью импульсов или повторяющейся частотой.
APPLICATION OF THE GDV TECHNIQUE FOR STUDY OF WATER AND LIQUIDS
Informativeness of the GDV images of liquid objects was demonstrated in our works with Kirlian photography in the process of study of microbiological cultures (pp.112-119 of [8]). Computerized GDV technique opened new perspectives for this method. It was demonstrated the changes of water GDV patterns under the influence of pyramids (colour fig.14 of this book), directed consciousness influence of a trained person (pp.155-157 of [8]), difference in GDV patterns for homeopathy remedies and flower essences. GDV-grams of a blood samples depend on the health state of a patient (pp.132-141 of [8] and [1]). Hypotheses of the molecular structure of “charged” water have been developed [2-6]
Three main techniques of water GDV images registration have been developed: with lying drop, with suspended drop and in a closed capsule (Fig.1). In the first case (Fig.1a) calibrated drop from the dispenser is placed on the transparent film on the instrument window and grounded electrode is inserted inside the liquid about one millimeter above the glass. This technique has low reproducibility and operates not with all the liquids due to the out-flow of drop under electrostatic forces.
In the second method with suspended drop (Fig.1b) it is important providing the stable configuration of the liquid’s meniscus and stability of its distance to the window that creates some experimental difficulties. The third method is simpler (Fig.1c), but it is less sensitive compared with previous two. Special installation for the realization of the second method is available from Kirlionics Technologies Ltd.
Results obtained and techniques developed reveal perspectives of wide application of GDV technique for control of structural properties of liquids. This opens interesting new perspectives, for example, creating principally new biofeedback system of structurization of liquids for the controlled influence to the biological objects.
Let us discuss the results of one of the experiments.
STUDY OF FLOWER ESSENCES (FE) GDV PARAMETERS.
Early in the 20th century, a London doctor and homeopath, Dr. Edward Bach developed Flower Remedies for suppression of harmful emotions, such as despair or fearfulness. Now they are being made commercially and available worldwide. In modern complementary medicine practice different types of flower essences (FE) are used. The positive effect of their application has been demonstrated and empirical methods of the preparation and keeping have been carried out [7]. At the same time the only method used for the evaluation of their energetic value and quality was dowsing. This fact does
28
not allow revealing the influence of the preparation and storage conditions, comparing different FE. GDV technique has been applied for studying characteristics of different FE.
Methods of the experiment.
Standard FE prepared in Frantsila Farm company (Finland) from the crops of 1998 have been studied. Sample FE was taken in standard 1.0 ml syringe which was placed on the special appliance of the GDV instrument (of the fig.1b type). There were carried out 5 shots of each sample, the received data were analyzed by means of “GDV-Analysis” program, computed parameters were loaded in ‘MS EXCEL’ program where statistical parameters and diagrams were created. Experiments were assisted by Mario Urbanski (Finland).
Results of the experiments.
It was revealed that GDV-grams of FE differ much from the basic spirituous solution both by the type and by the quantitative parameters. It is possible to distinguish several types of FE GDV-grams, which differ from each other by type (fig.2) and parameters of the glow (fig.3).
It was checked the influences of the way of plants preparation on the FE GDV-grams. They tested the FE prepared by drying (A) and boiling (B) of basic plants. As it is seen from fig.4 no difference was revealed for blueberry leaves (13), birch has more energy after boiling (2), for greater plantain and Marsh tea (16 and 21) the energy gets bigger after drying.
The results seem to be natural it we pay attention at the fact that drying is more positive for flowers and boiling for leaves.
There were compared the solutions containing different amount of tincture drops. As it becomes clear from the Fig.5, samples with 0.5-2 drops have the most energy, when the number of drops rises, the energy falls. The data correspond to existing notions.
Conclusion.
The received results testify to change of energetic state of the solution whilst adding in it some drops of tincture, which is a direct experimental evidence of intuitively created FE methods. GDV method can be used for selecting and checking of energetic features and effectiveness of FE.
For computer classification of GDV images algorithms based on Bayesian classifier have been developed. The program was tested with GDV images of solutions of different NaCl concentration taken with a GDV instrument in a hanging drop installation. The system could
29
distinguish the correspondent GDV-grams of water drops practically without mistakes. At the next stage different examples of structured water were successfully classified.
The first studies have proved the soundness of the selected approach and enabled us to start several sets of experiment in different scopes of medicine and biology. The work is being done now by several groups and the results are very optimistic.
Literature
1. Kukuy L., Gudakova G. GDV Technique application for the evaluation of treatment effects for the patients of cardiological and surgical departments. In: Proceedings of the Fourth International Conference for Medical and Applied Bio-Electrography “Kirlionics98”. 1998, St- Petersburg.
2. Karvarainen A., “Hierarchic concept of matter and field”. NY. 1995
3. Garner C., Hock N. Chaos theory and homeopathy. The Berlin Journal on Research in Homeopathy, 1 (4/5), 236-242, 1991.
4. Smith C.W. Measurements of the Electromagnetic Fields Generated by Biological Systems. Neural Network World. 5: 819-829, 1995.
5. Smith C.W. In: High Dilution Effects on Cells and Integrated Systems. Eds. C. Taddei- Ferretti, P.Marotta. Vol.3. Singapore: World Scientific, 1998.
6. Anagnostatos G.S. In: High Dilution Effects on Cells and Integrated Systems. Eds. C. Taddei-Ferretti, P.Marotta. Vol.3. Singapore: World Scientific, 1998.
7. Woodham A., Peters D. Encyclopedia of Complementary Medicine. Dorling Kindewrsley. London. 1997.
8. Korotkov K. Aura and Consciousness: New Stage of Scientific Understanding. SPb 1998.
Pictures.
- Different methods of liquids GDV characteristics study. 1 – glass window of the GDVCamera; 2 – liquid; 3 – grounding electrode; 4 – glass tube (syringe); 5 – glass bottle.
- GDV-grams of different Flower Essences.
- GDV parameters (area) of Flower Essences compared with initial solution.
- GDV parameters (area) of Flower Essences prepared differently. A – drying B and boiling.
- GDV parameters (area) of Flower Essences with different drops of essence.